Folding and misfolding pathways of G-quadruplex DNA
نویسندگان
چکیده
G-quadruplexes adopt various folding topologies, but information on their folding pathways remains scarce. Here, we used electrospray mass spectrometry to detect and quantify the specifically bound potassium ions, and circular dichroism to characterize the stacking topology of each ensemble. For human telomeric (hTel) sequences containing the d((GGGTTA)3GGG) core, K+ binding affinity and cooperativity strongly depends on the chosen construct. The shortest sequences bind only one K+ at low KCl concentration, and this 2-quartet G-quadruplex is antiparallel. Flanking bases increase the K+ binding cooperativity. To decipher the folding pathways, we investigated the kinetics of K+ binding to telomeric (hybrid) and c-myc (parallel) G-quadruplexes. G-quadruplexes fold via branched pathways with multiple parallel reactions. Up to six states (one ensemble without K+, two ensembles with 1-K+ and three ensembles with 2-K+) are separated based on their formation rates and ion mobility spectrometry. All G-quadruplexes first form long-lived misfolded structures (off-pathway compared to the most stable structures) containing one K+ and two quartets in an antiparallel stacking arrangement. The results highlight the particular ruggedness of G-quadruplex nucleic acid folding landscapes. Misfolded structures can play important roles for designing artificial G-quadruplex based structures, and for conformational selection by ligands or proteins in a biological context.
منابع مشابه
Direct measurement of sequential folding pathway and energy landscape of human telomeric G-quadruplex structures.
Single-stranded guanine-rich sequences fold into compact G-quadruplexes. Although G-triplexes have been proposed and demonstrated as intermediates in the folding of G-quadruplexes, there is still a debate on their folding pathways. In this work, we employed magnetic tweezers to investigate the folding kinetics of single human telomeric G-quadruplexes in 100 mM Na(+) buffer. The results are cons...
متن کاملDominant Driving Forces in Human Telomere Quadruplex Binding-Induced Structural Alterations.
Recently various pathways of human telomere (ht) DNA folding into G-quadruplexes and of ligand binding to these structures have been proposed. However, the key issue as to the nature of forces driving the folding and recognition processes remains unanswered. In this study, structural changes of 22-mer ht-DNA fragment (Tel22), induced by binding of ions (K(+), Na(+)) and specific bisquinolinium ...
متن کاملSingle-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity
Guanine-rich nucleic acids can form G-quadruplexes that are important in gene regulation, biosensor design and nano-structure construction. In this article, we report on the development of a nanopore encapsulating single-molecule method for exploring how cations regulate the folding and unfolding of the G-quadruplex formed by the thrombin-binding aptamer (TBA, GGTTGGTGTGGTTGG). The signature bl...
متن کاملAtomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex
In this work we studied the folding process of the hybrid-1 type human telomeric DNA G-quadruplex with solvent and K(+) ions explicitly modeled. Enabled by the powerful bias-exchange metadynamics and large-scale conventional molecular dynamic simulations, the free energy landscape of this G-DNA was obtained for the first time and four folding intermediates were identified, including a triplex a...
متن کاملControlled-folding of a small molecule modulates DNA G-quadruplex recognition.
Differential recognition of diverse G-quadruplex structures can be achieved by controlling the folding of a small molecule.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016